
32.768kHz MFMS Resonator

Application

Small and low-profile devices

Ex. Wearables, Stylus pen, Wireless module, Hearing aids, Smart cards, Medical patch devices, Wireless Earphone, etc.

Industrial Equipment

Ex. Encoder, PLC (Programmable Logic Controller) FEMS (Factory Energy Management System) BEMS (Building Energy Management System), etc.

Lighting

Embedding in ICs

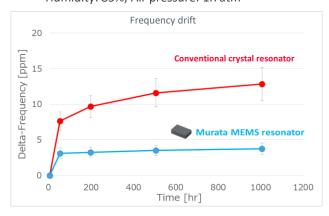
Ex. Microcomputers, real-time clocks, etc.

Product Concept

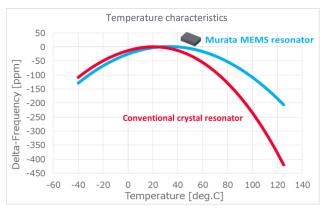
World's Smallest Size 0.9 x 0.6 x 0.3 (in mm) **High Temperature / High Reliability**

- Realizing 50% area saving compared with 1.2x1.0mm sized turning fork crystal.
- Available for use in high temperature

applications due to the use of non organic adhesives.


- Built-in Capacitance
 - Space saving by reducing the external load capacitance for oscillation circuit.
- Low ESR
 - Lower power consumption

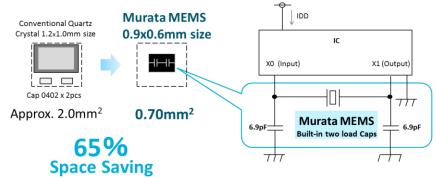
can be realized by optimizing IC gain.


High Temperature / High Reliability

HAST*/PCT** Test [Test condition] Temperature: 120°C, Humidity: 85%, Air pressure: 1.7atm

Murata MEMS exhibits stable frequency stability even under harsh environment by eliminating organic material inside the package.

Temperature Characteristics

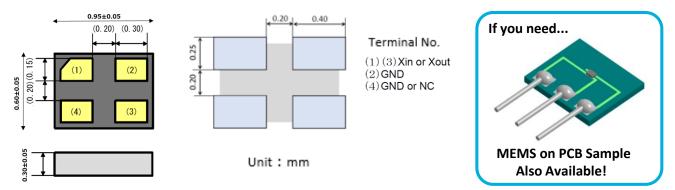

Good temperature characteristics are realized by optimizing device structure and design.

> *High Accelerated Stress Test **Pressure Cooker Test

Space saving

65% space saving is achieved compared to a 1.2x1.0mm sized crystal with 0.4x0.2mm sized load capacitors.

Low power consumption


The low ESR can be utilized to lower the IC gain. This enables a reduction in the current consumption of the oscillation circuit and the power consumption of the overall design.

Resonator	ESR spec.	IC gain	Oscillation margin	Current Consumption		
General 2012 and 1610 size crystal	90 kΩ max.	High	O Good Enough	115.6 nA)	13%
		Low	∆ Not Enough	100.9 nA		
Murata MEMS	75 kΩ max.	High	© Excellent	115.5 nA		saving!
		Low	⊖ Good Enough	100.9 nA		Ū

Product lineup and dimensions

Part number	Operating Temperature Range	Frequency Tolerance	Frequency Shift by Temperature	Load Capacitance*	Equivalent Series Resistance
WMRAG32K76CS1C00R0	-30 to +85° C		-150 to +10 ppm	8pF	75 k Ω max.
WMRAG32K76CS2C00R0	-40 to +85° C	1 20	-200 to +10 ppm		
WMRAG32K76CS3C00R0	-40 to +105° C	±20ppm			
WMRAG32K76CS4C00R0	-40 to +125° C		-270 to +10 ppm		

*When considering replacement from a crystal resonator, note that the load capacitance value differs for crystal resonators and MEMS resonators.

Product specifications are as of April 2020. They are subject to change without notice. Murata Manufacturing Co., Ltd.